Pharmaceutical Emulsion


An Emulsion is a thermodynamically unstable system consisting of two immiscible liquid phases,  one of which is dispersed/ distributed as a  globules/droplet size of  0.1-100 μ (internal or dispersed phase)  in the other Liquid medium(External/ continuous phase) stabilized by a third substance called an emulsifying agent.

The two well known examples of emulsions are:
1) Milk in which the particles of the liquid fat are dispersed in water.
2) Cod liver oil emulsion in which water is dispersed in the oil.

Pharmaceutical Emulsion
  • For Pharmaceutical emulsion, globules size is 0.1 – 10 μ.
  • globules/ droplets/ dispersed phase ⇒   Known as internal/ discontinue phase
  •  dispersion medium ⇒  known as external  phase/ continuous  phase

Classification/types of emulsions:

Classification/types of emulsion
  • Multiple emulsion is also known as -emulsion within-emulsion  and denotes as w/o/w & o/w/o
  • Systemic emulsion:  orally/intravenous ⇒ are mostly o/w  type emulsion.

Identification of emulsions

Identification of emulsion is done by following methods
  1. Dye solubility test
  2. Dilution test
  3. Conductivity test
  4. Creaming test
  5. Other tests

1. Dye Solubility test:

  • Water-soluble dye -Amaranth and Methylene blue-form uniform tint in O/W emulsion.
  • Sudan III & Scarlet Red (oil-soluble dye)-form uniform tint in W/O emulsion.

2. Dilution test

  • When a dispersion medium (i.E. External/continuous phase) is added to an emulsion, NO phase separation occurs.
    • When water is added to O/W  emulsion-  no phase separation; if the oil is added to O/W  emulsion-  phase separation takes place.
    • When the oil is added to W/O  emulsion-  no phase separation occurs; if the water is added to O/W  emulsion-  phase separation takes place.

3. Conductivity test

This test is based on the ability of water to conduct electricity. If water is the continuous phase (i.e. O/W), then the emulsion conduct electricity.  if oil is the continuous phase (i.e W/O emulsion), the emulsion fails to conduct electricity.

4. Creaming test

  • (direction of creaming upward or downward)
  • W/O emulsion: normally cream downwards as well is usually less dense than water
  • O/W emulsion: normally cream upwards

5. Other tests: 

  • Cobalt chloride test filter paper test (blue to pink, indicating that the emulsion is o/w type.) &
  • Fluorescence test (fluorescence under microscope, then it is w/o type and if it shows only spotty fluorescence, then it is o/w type)

Preparation of emulsion/ Formulation of emulsion

To Prepare emulsion, there is a need for emulsifying agents and Formulation additives (Antioxidants, Preservatives, Humectants, Colors and flavorings agents).

An emulsion is prepared by shaking strongly the mixture of the two immiscible liquids or by passing the mixture through a mill known as the homogenizer. The emulsions thus prepared from the pure liquids are usually not stable and the two liquids separate out on standing. To get a stable emulsion, small quantities of certain other substances are added during preparation. The substances thus added to stabilize the emulsions are called emulsifiers or emulsifying agents. The substances commonly used as emulsifying agents are soaps of various kinds, long-chain sulphonic acids or lyophilic colloids like proteins, gum, and agar.

An emulsion is prepared by the following methods
  1. Dry gum method
  2. Wet gum method
  3. Bottle method (used for volatile oils)
  4. Industrial method:
    • Homogenizer
    • Colloidal mill
    • Ultra- signifiers
Type of oilOil:Water:Gum ratio
Fixed oil4:2:1
Mineral oils3:2:1
Volatile oil2:2:1

Stability of Emulsion

  • Dispersed droplets tend to fuse themselves and finally separated into two layers ( Since Cohesive force is greater than adhesive force).
  • Cohesive force:-  attractive force between the same type of molecules in liquids
  • adhesive force:–  force between unlike molecules
  • If Cohesive force is more ⇒Coalescence of droplets ⇒ Separation of Phase. So Emulsifiers are used to prevent Coalescence/ regrouping of globules.

Emulsifying agent & Bankroft’s Rule

  • Emulsions are the thermodynamically unstable system. The stability of the emulsion system can be increased by using an appropriate emulsifying agent. 
  • Emulsifying agent Stabilizes emulsion by preventing/Reducing the coalescence of dispersed globules.
  •  They act as Bridge between the polar and nonpolar phases and decrease the interfacial tension. ( emulsifying agent  are amphiphilic in nature, have polar & nonpolar group).
  • Emulsifier should have a balance between its hydrophilic and hydrophobic groups, produce a stable emulsion, be stable itself, be chemically inert, be non-toxic and cause no irritation on the application, be odorless, tasteless & colorless and be expensive.
  • Emulsifying agents are classified into the following three groups.
classification of emulsifying agents

Bankroft’s Rule

  • Describe the relationship between the nature of the emulsifying agent and type of emulsion formed.
    • If a surfactant/emulsifying agent is more soluble in water, then the  aqueous phase becomes continuous phase ⇒ O/W emulsion ⇒ eg. Tween, acacia, bentonite
    • If oil-soluble emulsifier⇒ Nonaqueous phase becomes continuous phase ⇒ W/O  emulsion ⇒ eg. Span
Illustrating instability and Stability of emulsion
HLB (Hydrophilic-Lipophilic Balance for surfactant):
  • Established by Griffin; Provide a scale of surfactant hydrophilicity;  An emulsifier is a molecule with ambiphilic properties; Value range from 0 to 20.
  • The relative solubility of the emulsifying agent in one of the phase is expressed by HLB scale.
    • Emulsifier with high HLB value (8 to 16) ⇒  favor O/W emulsion
    • Emulsifier with love HLB value (3-8) ⇒favor W/O emulsion

Physically Instability of Emulsion


  • Neighboring globals come closer to each other ⇒ forms Flocs
  • Re-Dispersed on shaking
  • Prevented by imparting charges on globules and using uniform-sized globules


  • Occurs Due to the density difference
  • Upward creaming-O/W emulsion
  • Downward creaming-W/O emulsion
  • If Creaming occurs, Drug is not uniformly distributed ⇒ variable in dosage ⇒ emulsion should be shaken for only before use

3. Coalescence:

  • Globules tend to  fuse with each other and forms bigger globules and  ultimately lead to the breaking of the emulsion
  • Occurs due to destruction of  emulsifier film around the globules due to insufficient agent or by temperature change or By the presence of micro-organism, or by creaming

4. Breaking:

  • Complete separation of aqueous and oil phases
  • Irreversible step

5. Phase inversion:

  • Change of emulsion type from O/W to W/O and vice versa
Preparation of Multiple Emulsion/ Emulsion within Emulsion


Leave a Comments here

Message us
Need Help?
Have you any Inquiry? Please leave a message. Our team will reply ASA
%d bloggers like this: